Popular Posts
-
Integral de una constaste por una función de x Integración Integrar es el proceso recíproco del de derivar , es decir, ...
-
Integral de una constante por una variable Dar a conocer lo aprendido en la clase del tema “Integral de una const...
-
Operaciones con matrices (suma, diferencia, multiplicación) Dar a conocer lo aprendido en la clase del tema "operaciones con mat...
-
Máximos y mínimos de funciones de 2 variables Objetivo: Dar a conoser lo aprendido en la clase del tema “Máximos y mín...
-
Reducción de gauss y Gauss- Jordan Dar a conocer lo aprendido en la clase del tema "Reducción de gauss y Gauss- Jordan" ...
-
Sistemas de ecuaciones lineales consistentes, inconsistente y su representación para métrica del conjunto solución Dar a conocer lo ...
-
Integración con condiciones iniciales Leer mas: Documento
-
Álgebra de matrices Dar a conocer lo aprendido en la clase del tema "Álgebra de matrices" Álgebra de matrices ...
-
Expresión matricial de un sistema de ecuaciones lineales Dar a conocer lo aprendido en la clase del tema "Expresión matricial de...
Con tecnología de Blogger.
Blog Archive
-
▼
2014
(47)
-
▼
noviembre
(47)
- 2.3.7 Regla de la potencia
- 2.3.7.2 Integrales que incluyen funciones funcione...
- 2.3.4 integral de en
- 4.3.4 Regla cramer
- 4.3.3 propiedades de los determinantes
- 4.3.2 Expansión de cofactores
- 4.3.1 Definición de una determinante
- 4.2.4 matriz inversa
- 4.2.3 Propiedades de las operaciones matrices
- 4.2.2 operaciones con matrices (suma, diferencia, ...
- 4.2.1 Tipos de matrices cuadradas, rectangulares, ...
- 4.2 Álgebra de matrices
- 4.1.5.5 Sistemas homogéneos
- 4.1.5.4 Reducción de gauss y Gauss- Jordan
- 4.1.5.3 Operaciones elementales sobre renglones
- 4.1.5.2 Expresión matricial de un sistema de ecuac...
- 4.1.5.1 Definición de Matriz
- 4.1.5 Eliminación de Gauss y Gaus - Jordan
- 4.1.4 Sistemas de ecuaciones equivalentes
- 4.1.3 Métodos para resolución de sistemas de ecuac...
- 4.1.2 sistemas de ecuaciones lineales consistentes...
- 4.1.1 Definición
- Modulo 4. sistemas de ecuaciones lineal y matrices
- 3.3 Propiedades de la integral definida
- 3.2 Teorema fundamental del calculo
- 3.1 área bajo la curva
- 3.4 Área entre 1 y 2 curvas.
- Modulo 3 Integral definida
- 2.3.11 integrales por partes
- 2.3.10 integrales que incluyen au
- 2.3.9 integrales que las (1/u) a u
- 2.3.8 integrales que incluyen funciones logarítmicas
- 2.3.7.1 Integrales que incluyen u(n)
- 2.3.6 integral de una suma (diferencia) de funciones
- 2.3.5 integral de una constaste por una función de x
- 2.3.3 Integral xn
- 2.3.2 Integral de una constante por una variable
- 2.3.1 Integral indefinida de una constante
- 2.3 Formulas básicas de integración
- 2.2.1 Integración con condiciones iniciales
- 2.2 integral definida
- 2.1 Antiderivada
- Modulo 2 Integración
- 1.3 Máximos y mínimos de funciones de 2 variables.
- 1.2 Derivadas parciales.
- 1.1 Funciones en dos variables
- Objetivo General
-
▼
noviembre
(47)
Acerca de mí
Blogroll
Archivo del Blog
-
▼
2014
(47)
-
▼
noviembre
(47)
- 2.3.7 Regla de la potencia
- 2.3.7.2 Integrales que incluyen funciones funcione...
- 2.3.4 integral de en
- 4.3.4 Regla cramer
- 4.3.3 propiedades de los determinantes
- 4.3.2 Expansión de cofactores
- 4.3.1 Definición de una determinante
- 4.2.4 matriz inversa
- 4.2.3 Propiedades de las operaciones matrices
- 4.2.2 operaciones con matrices (suma, diferencia, ...
- 4.2.1 Tipos de matrices cuadradas, rectangulares, ...
- 4.2 Álgebra de matrices
- 4.1.5.5 Sistemas homogéneos
- 4.1.5.4 Reducción de gauss y Gauss- Jordan
- 4.1.5.3 Operaciones elementales sobre renglones
- 4.1.5.2 Expresión matricial de un sistema de ecuac...
- 4.1.5.1 Definición de Matriz
- 4.1.5 Eliminación de Gauss y Gaus - Jordan
- 4.1.4 Sistemas de ecuaciones equivalentes
- 4.1.3 Métodos para resolución de sistemas de ecuac...
- 4.1.2 sistemas de ecuaciones lineales consistentes...
- 4.1.1 Definición
- Modulo 4. sistemas de ecuaciones lineal y matrices
- 3.3 Propiedades de la integral definida
- 3.2 Teorema fundamental del calculo
- 3.1 área bajo la curva
- 3.4 Área entre 1 y 2 curvas.
- Modulo 3 Integral definida
- 2.3.11 integrales por partes
- 2.3.10 integrales que incluyen au
- 2.3.9 integrales que las (1/u) a u
- 2.3.8 integrales que incluyen funciones logarítmicas
- 2.3.7.1 Integrales que incluyen u(n)
- 2.3.6 integral de una suma (diferencia) de funciones
- 2.3.5 integral de una constaste por una función de x
- 2.3.3 Integral xn
- 2.3.2 Integral de una constante por una variable
- 2.3.1 Integral indefinida de una constante
- 2.3 Formulas básicas de integración
- 2.2.1 Integración con condiciones iniciales
- 2.2 integral definida
- 2.1 Antiderivada
- Modulo 2 Integración
- 1.3 Máximos y mínimos de funciones de 2 variables.
- 1.2 Derivadas parciales.
- 1.1 Funciones en dos variables
- Objetivo General
-
▼
noviembre
(47)
- Home »
- 4.1.3 Métodos para resolución de sistemas de ecuaciones lineales: Método gráfico, igualación, sustitución, eliminación (sumas y 10)
4.1.3 Métodos para resolución de sistemas de ecuaciones lineales: Método gráfico, igualación, sustitución, eliminación (sumas y 10)
jason
On martes, 25 de noviembre de 2014
Métodos para resolución de sistemas de ecuaciones lineales: Método gráfico, igualación, sustitución, eliminación (sumas y 10)
Dar a conocer lo aprendido en la clase
del tema "Método gráfico, igualación, sustitución, eliminación (sumas y 10)"
Método gráfico
El proceso de resolución de un sistema de ecuaciones mediante el método gráfico se resuelve en los siguientes pasos:
- Se despeja la incógnita en ambas ecuaciones.
- Se construye para cada una de las dos ecuaciones de primer grado obteniendo la tabla de valores correspondientes.
- Se representan gráficamente ambas rectas en los ejes coordenados.
- En este último paso hay tres posibilidades:
- Si ambas rectas se cortan, las coordenadas del punto de corte son los únicos valores de las incógnitas (x,y). "Sistema compatible determinado".
- Si ambas rectas son coincidentes, el sistema tiene infinitas soluciones que son las respectivas coordenadas de todos los puntos de esa recta en la que coinciden ambas. «Sistema compatible indeterminado».
- Si ambas rectas son paralelas, el sistema no tiene solución en los reales pero si en los complejos.
Igualación
El método de igualación se puede entender como un caso particular del método de sustitución en el que se despeja la misma incógnita en dos ecuaciones y a continuación se igualan entre sí la parte derecha de ambas ecuaciones.Tomando el mismo sistema utilizado como ejemplo para el método de sustitución, si despejamos la incógnita
Como se puede observar, ambas ecuaciones comparten la misma parte izquierda, por lo que podemos afirmar que las partes derechas también son iguales entre sí.
Una vez obtenido el valor de la incógnita
La forma más fácil de tener el método de sustitución es realizando un cambio para despejar x después de averiguar el valor de la y.
Sustitución
El método de sustitución consiste en despejar en una de las ecuaciones cualquier incógnita, preferiblemente la que tenga menor coeficiente y a continuación sustituirla en otra ecuación por su valor.En caso de sistemas con más de dos incógnitas, la seleccionada debe ser sustituida por su valor equivalente en todas las ecuaciones excepto en la que la hemos despejado. En ese instante, tendremos un sistema con una ecuación y una incógnita menos que el inicial, en el que podemos seguir aplicando este método reiteradamente. Por ejemplo, supongamos que queremos resolver por sustitución este sistema:
En la primera ecuación, seleccionamos la incógnita
El siguiente paso será sustituir cada ocurrencia de la incógnita
Al resolver la ecuación obtenemos el resultado
Eliminación de Gauss-Jordan
Una variante de este método, denominada eliminación de Gauss-Jordan, es un método aplicable únicamente a los sistemas lineales de ecuaciones, y consistente en triangular la matriz aumentada del sistema mediante transformaciones elementales, hasta obtener ecuaciones de una sola incógnita, cuyo valor será igual al coeficiente situado en la misma fila de la matriz. Este procedimiento es similar al anterior de reducción, pero ejecutado de manera reiterada y siguiendo un cierto orden algorítmico.| Ejemplo de eliminación de Gauss-Jordan |
Regla de Cramer
Artículo principal: Regla de Cramer
La regla de Cramer da una solución para sistemas compatibles determinados en términos de determinantes y adjuntos dada por:Donde Aj es la matriz resultante de remplazar la j-ésima columna de A por el vector columna b. Para un sistema de dos ecuaciones y dos incógnitas:
La regla de Cramer da la siguiente solución:
Nota: Cuando en la determinante original det(A) el resultado es 0, el sistema indica múltiples o sin coincidencia.
leer mas en: http://es.wikipedia.org/wiki/Sistema_de_ecuaciones_lineales#Eliminaci.C3.B3n_de_Gauss-Jordan