jason On lunes, 24 de noviembre de 2014

Teorema fundamental del calculo


Dar a conocer lo aprendido en la clase del tema "Teorema fundamental del calculo "

El teorema fundamental del cálculo consiste (intuitivamente) en la afirmación de que la derivación e integración de una función son operaciones inversas. Esto significa que toda función continua integrable verifica que la derivada de su integral es igual a ella misma. Este teorema es central en la rama de las matemáticas denominada análisis matemático o cálculo.

Primer teorema fundamental del cálculo

Dada una función f integrable sobre el intervalo [a,b], definimos F sobre [a,b] por F(x) = {\int_{a}^x f(t)dt}. Si f es continua en c \in (a,b), entonces F es derivable en c y F'(c) = f(c).
Consecuencia directa del primer teorema fundamental del cálculo infinitesimal es:
\frac{d}{dx}{\int_{a(x)}^{b(x)}f(t)dt} = f(b(x)) \cdot b'(x) - f(a(x)) \cdot a'(x)
Siendo f(t) una función integrable sobre el intervalo [a(x),b(x)] con a(x) y b(x) derivables.

Demostración

Lema

Sea f integrable sobre [a,b] y
m \leq f(x) \leq M \; \forall x \in [a,b]
Entonces
m(b-a) \leq {\int_a^b f(t)dt} \leq M(b-a)

Demostración del lema

Está claro que m(b-a)\leq L(f,P) \ \hbox{y}\  U(f,P) \leq M(b-a) para toda partición P. Puesto que  \int_{a}^{b}f = \sup {L(f,P)}=\inf{U(f,P)}, la desigualdad se sigue inmediatamente.

Demostración

Por definición se tiene que F'(c)={ \lim_{h \rightarrow 0} {\frac{F(c+h)-F(c)}{h}} }.
Sea h>0. Entonces F(c+h)-F(c)={\int_c^{c+h} f(t)dt}.
Se define m_h y M_h como:
m_h = \inf\{f(x)| c\leq x \leq c+h\},
M_h = \sup\{f(x)| c\leq x \leq c+h\}
Aplicando el 'lema' se observa que
m_h \cdot h \leq {\int_c^{c+h} f(t)dt} \leq M_h \cdot h.
Por lo tanto,
m_h \leq \frac{F(c+h)-F(c)}{h} \leq M_h
Sea h < 0. Sean
{m^*}_h = \inf \{ f(x)|c+h \leq x \leq c \},
{M^*}_h = \sup \{ f(x)|c+h \leq x \leq c \}.
Aplicando el 'lema' se observa que
{m^*}_h \cdot (-h) \leq {\int_{c+h}^c f(t)dt } \leq {M^*}_h \cdot (-h) .
Como
F(c+h)-F(c)={\int_c^{c+h} f(t)dt} = -{\int_{c+h}^{c} f(t)dt},
entonces,
{M^*}_h \cdot h \leq F(c+h)-F(c) \leq {m^*}_h \cdot h.
Puesto que h < 0, se tiene que
{m^*}_h \leq \frac{F(c+h)-F(c)}{h} \leq {M^*}_h.
Y como f es continua en c se tiene que
\lim_{h \rightarrow 0} m_h = \lim_{h \rightarrow 0} M_h = \lim_{h \rightarrow 0} {m^*}_h = \lim_{h \rightarrow 0} {M^*}_h = f(c),
y esto lleva a que
F'(c)={ \lim_{h \rightarrow 0} {\frac{F(c+h)-F(c)}{h}} } = f(c).

Ejemplos

F(x) = \int_{0}^{x} t^2 dt \quad\Rightarrow\quad F'(x) = x^2
G(x) = \int_{0}^{e^{3x}} \sin(t) dt \quad\rightarrow\quad G'(x) = \sin(e^{3x}) e^{3x} \cdot3
H(x) = \int_{0}^{x^2} \arcsin(t) dt\quad \rightarrow\quad H'(x) = \arcsin(x^2) \cdot 2x
I(x) = \int_{0}^{x^2} \arcsin(t) dt\quad \rightarrow\quad I'(x) = \arcsin(x^2) \cdot 2x
J(x) = \int_{0}^{\int_{a}^{x} \frac{1}{(1+\sin^2t)}dt} \frac{1}{(1+\sin^2t)} dt\quad \rightarrow\quad J'(x)= \frac{1}{(1+\sin^2(\int_{a}^{x} \frac{1}{(1+\sin^2t)}dt))} \,\cdot\, \frac{1}{(1+\sin^2x)}

Leave a Reply

Subscribe to Posts | Subscribe to Comments