jason On martes, 25 de noviembre de 2014

Eliminación de Gauss y Gauss - Jordan


Dar a conocer lo aprendido en la clase del tema "Eliminación de Gauss y Gaus - Jordan"

En matemáticas, la eliminación de Gauss-Jordan, llamada así debido a Carl Friedrich Gauss y Wilhelm Jordan, es un algoritmo del álgebra lineal para determinar las soluciones de un sistema de ecuaciones lineales, encontrar matrices e inversas. Un sistema de ecuaciones se resuelve por el método de Gauss cuando se obtienen sus soluciones mediante la reducción del sistema dado a otro equivalente en el que cada ecuación tiene una incógnita menos que la anterior. El método de Gauss transforma la matriz de coeficientes en una matriz triangular superior. El método de Gauss-Jordan continúa el proceso de transformación hasta obtener una matriz diagonal.

Ejemplo

Supongamos que es necesario encontrar los números "x", "y", "z", que satisfacen simultáneamente estas ecuaciones:

   \left \{
      \begin{array}{rrrcr}
          2x & + y &   -z & = &   8 \\
         -3x & - y & + 2z & = & -11 \\
         -2x & + y & + 2z & = &  -3 \\
      \end{array}
   \right .
Esto es llamado un sistema lineal de ecuaciones. El objetivo es reducir el sistema a otro equivalente, que tenga las mismas soluciones. Las operaciones (llamadas elementales) son estas:
  • Multiplicar una ecuación por un escalar no nulo.
  • Intercambiar de posición dos ecuaciones
  • Sumar a una ecuación un múltiplo de otra.
Estas operaciones pueden representarse con matrices elementales que se usan también en otros procedimientos como la factorización LU o la diagonalización por congruencia de una matriz simétrica.
En nuestro ejemplo, eliminamos x de la segunda ecuación sumando 3/2 veces la primera ecuación a la segunda y después sumamos la primera ecuación a la tercera. El resultado es:

   \left \{
      \begin{array}{rrrcr}
          2x & +             y &             -z & = & 8 \\
             &    \frac{1}{2}y & + \frac{1}{2}z & = & 1 \\
             &              2y &           +  z & = & 5
      \end{array}
   \right .
Ahora eliminamos y de la primera ecuación sumando -2 veces la segunda ecuación a la primera, y sumamos -4 veces la segunda ecuación a la tercera para eliminar y.

   \left \{
      \begin{array}{rrrcr}
          2x &                 &            -2z & = & 6 \\
             &    \frac{1}{2}y & + \frac{1}{2}z & = & 1 \\
             &                 &             -z & = & 1
      \end{array}
   \right .
Finalmente eliminamos z de la primera ecuación sumando -2 veces la tercera ecuación a la primera, y sumando 1/2 veces la tercera ecuación a la segunda para eliminar z.

   \left \{
      \begin{array}{rrrcr}
          2x &              &    & = & 4 \\
             & \frac{1}{2}y &    & = & \frac{3}{2} \\
             &              & -z & = & 1
      \end{array}
   \right .
Despejando, podemos ver las soluciones:

   \left \{
      \begin{array}{rrrcr}
          x &   &   & = & 2 \\
            & y &   & = & 3 \\
            &   & z & = & -1
      \end{array}
   \right .
Para clarificar los pasos, se trabaja con la matriz aumentada. Podemos ver los 3 pasos en su notación matricial:
Primero:

   \left (
      \begin{array}{rrrr}
          2 &  1 & -1 &   8 \\
         -3 & -1 &  2 & -11 \\
         -2 &  1 &  2 &  -3
      \end{array}
   \right )
Después,

   \left (
      \begin{array}{rrrr}
         2 &   0 &  0 & 4   \\
         0 & 1/2 &  0 & 3/2 \\
         0 &   0 & -1 & 1
      \end{array}
   \right )
Por último.

   \left (
      \begin{array}{rrrr}
         1 & 0 & 0 &  2 \\
         0 & 1 & 0 &  3 \\
         0 & 0 & 1 & -1
      \end{array}
   \right )
Si el sistema fuera incompatible, entonces nos encontraríamos con una fila como esta:

\begin{pmatrix}
0 & 0 & 0 & 1 \\
\end{pmatrix}
Que representa la ecuación: 0x + 0y + 0z = 1, es decir, 0 = 1 que no tiene solución.

Leer mas en: http://es.wikipedia.org/wiki/Sistema_de_ecuaciones_lineales#Eliminaci.C3.B3n_de_Gauss-Jordan


Leave a Reply

Subscribe to Posts | Subscribe to Comments